Brebe tratado de


Pruebas de hipótesis paramétricas



Descargar 1.13 Mb.
Página15/24
Fecha de conversión10.12.2017
Tamaño1.13 Mb.
Vistas574
Descargas0
1   ...   11   12   13   14   15   16   17   18   ...   24
5. Pruebas de hipótesis paramétricas

 

5.1 Introducción

 El propósito de la prueba de hipótesis es determinar si el valor supuesto (hipotético) de un parámetro poblacional, como la media de la población, debe aceptarse como verosímil con base en evidencias muestrales. Recuérdese que sobre distribuciones de muestreo, se dijo que, en general, una media muestral diferirá en valor de la media poblacional. Si el valor observado de una estadística muestral, como la media muestral, se acerca al valor paramétrico supuesto y sólo difiere de él en un monto que cabría esperar del muestreo aleatorio, el valor hipotético no se rechaza. Si la estadística muestral difiere de la supuesta en un monto que no es posible atribuir al azar, la hipótesis se rechaza por inverosímil.

 Se han desarrollado tres procedimientos distintos para la prueba de hipótesis, todos los cuales conducen a las mismas decisiones cuando se emplean los mismos estándares de probabilidad (y riesgo). En este capítulo describiremos primeramente el método del valor crítico para la prueba de hipótesis. De acuerdo con este método, se determinan los así llamados valores críticos de la estadística de prueba que dictarían el rechazo de una hipótesis, tras de lo cual la estadística de prueba observada se compara con los valores críticos. Éste fue el primer método en desarrollarse, motivo por el cual buena parte de la terminología de las pruebas de hipótesis se deriva de él. Más recientemente, el método del valor P ha cobrado popularidad a causa de ser el más fácilmente aplicable a software de cómputo. Este método se basa en la determinación de la probabilidad condicional de que el valor observado de una estadística muestral pueda ocurrir al azar, dado que un supuesto particular sobre el valor del parámetro poblacional asociado sea en efecto correcto. El método de intervalos de confianza se basa en la observación de si el valor supuesto de un parámetro poblacional está incluido en el rango de valores que define a un intervalo de confianza para ese parámetro.

 Pero más allá del método de prueba de hipótesis que se use, debe hacerse notar que si un valor hipotético no se rechaza, y por lo tanto se acepta, ello no constituye una "prueba" de que sea correcto. La aceptación de un valor supuesto de un parámetro indica simplemente que se trata de un valor verosímil, con base en el valor observado de la estadística muestral.

 5.2 Pasos básicos de  la prueba de hipótesis con el método de valor crítico

 Paso1.  Formule la hipótesis nula y la hipótesis alternativa. La hipótesis nula (H0 es el valor paramétrico hipotético que se compara con el resultado muestral. Se le rechaza sólo si es poco probable que el resultado muestral haya ocurrido dado lo correcto de la hipótesis. La hipótesis alternativa (H1) se acepta sólo si la hipótesis nula es rechazada. En muchos libros de texto la hipótesis alternativa también se designa como Ha.

 Ejemplo  Un auditor desea probar el supuesto de que el valor medio de la totalidad de las cuentas por cobrar de una empresa dada es de $260.00 tomando una muestra de n = 36 y calculando la media muestral. El auditor desea rechazar el valor supuesto de $260.00 sólo si es claramente contradicho por la media muestral, caso éste en el que el valor hipotético recibiría el beneficio de la duda en el procedimiento de prueba. Las hipótesis nula y alternativa de esta prueba son H0 : = $260.00 y H1 :  $260.00.

 Paso 2. Especifique el nivel de significancia por aplicar. El nivel de significancia es el estándar estadístico que se especifica para rechazar la hipótesis nula. Si se especifica un nivel de significancia de 5%, la hipótesis nula se rechaza sólo si el resultado muestral es tan diferente del valor hipotético que una diferencia por ese monto o un monto superior ocurriría al azar con una probabilidad de 0.05 o menos.

 Nótese que si se usa el nivel de significancia de 5%, hay una probabilidad de 0.05 de rechazar la hipótesis nula aun siendo efectivamente cierta. Esto se llama error tipo I La probabilidad del error tipo I siempre es igual al nivel de significancia empleado como estándar para rechazar la hipótesis nula; se le designa con la letra griega minúscula  (alfa), de modo que a designa también al nivel de significancia. Los niveles de significancia de uso más frecuente en la prueba de hipótesis son los de 5% y 1%.

Ocurre un error tipo II si la hipótesis nula no se rechaza, y es por lo tanto aceptada, cuando en realidad es falsa. La determinación de la probabilidad del error tipo II se explica. En la tabla correspondiente se resumen los tipos de decisiones y las posibles consecuencias de las decisiones tomadas en pruebas de hipótesis.

 Paso 3. Seleccione la estadística de prueba. La estadística de prueba será ya sea la estadística muestral (el estimador insesgado del parámetro a prueba) o una versión estandarizada de la estadística muestral. Por ejemplo, para probar un valor hipotético de la media poblacional, la media de una muestra aleatoria tomada de esa población podría servir como la estadística de prueba. Sin embargo, si la distribución de muestreo de la media es normal, el valor de la media muestral se convierte usualmente en un valor z, el cual funge entonces como la estadística de prueba.

 Paso 4. Establezca el valor o valores críticos de la estadística de prueba. Habiendo especificado la hipótesis nula, el nivel de significancia y la estadística de prueba por usar, se establece entonces el(los) valor(es) crítico(s) de la estadística de prueba. Estos valores pueden ser uno o dos, dependiendo de si están implicadas las así llamadas pruebas unilaterales o bilaterales. En cualquier caso, un valor crítico identifica el valor de la estadística de prueba requerido para rechazar la hipótesis nula.

 Paso 5. Determine el valor de la estadística de prueba. Por ejemplo, al probar un valor hipotético de la media poblacional, se recolecta una muestra aleatoria y se determina el valor de la media muestral. Si el valor crítico fue establecido como un valor z, la media muestral se convierte a un valor z.

 Paso 6. Tome la decisión. El valor observado de la estadística muestral se compara con el valor (o valores) crítico(s) de la estadística de prueba. Se rechaza o no entonces la hipótesis nula. Si la hipótesis nula es rechazada, se acepta la hipótesis alternativa. Esta decisión tendrá relevancia a su vez para otras decisiones por tomar por los gerentes de operación, como la de si se está sosteniendo o no cierto estándar de desempeño o cuál de dos estrategias de comercialización seguir.

 

5.3 Prueba de una hipótesis referente a la media usando la distribución normal

 La distribución normal de probabilidad puede usarse para probar un valor hipotético de la media de la población 1) si n  30, por efecto del teorema central del límite, o 2) cuando n < 30 pero la población tiene una distribución normal y a es conocida.



 Una prueba bilateral se aplica cuando nos interesa una posible desviación en cualquier dirección respecto del valor hipotético de la media. La fórmula que se emplea para establecer los valores críticos de la media muestral es similar a la fórmula para determinar los límites de confianza para la estimación de la media de la población, excepto que el valor hipotético de la media poblacional es en este caso el punto de referencia, en lugar de la media muestral. Los valores críticos de la media muestral para una prueba de dos extremos, de acuerdo con el hecho de si se conoce o no, son



Ejemplo.  En relación con la hipótesis nula formulada en el ejemplo anterior, determine los valores críticos de la media muestral para probar la hipótesis al nivel de significancia del 5%. Dado que se sabe que la desviación estándar de los montos de las cuentas por cobrar es = $43.00, los valores críticos son

 Hipótesis: H0 := $260.00; Hi, : $260.00

 Nivel de significancia:  = 0.05

 Estadística de prueba: 0 , con base en una muestra de n = 36 y con  = 43.00



 0CR = valores críticos de la media muestral

En consecuencia, para rechazar la hipótesis nula la media muestral debe tener un valor inferior a $245.95 o superior a $274.05. Así, en el caso de una prueba de dos extremos existen dos regiones de rechazo. Los valores z de ±1.96 sirven para establecer los límites críticos, dado que, por efecto de la distribución normal estándar, una proporción de 0.05 del área permanece en las dos colas, lo que corresponde a la  = 0.05 especificada.



Fig.  4


En lugar de establecer los valores críticos en términos de la media muestral, en la prueba de hipótesis los valores críticos suelen especificarse en términos de valores z. Para el nivel de significancia del 5% los valores críticos de z para una prueba de dos extremos son -1.96 y + 1 .96, por ejemplo. Una vez determinado el valor de la media muestral, se le convierte a un valor z para que pueda comparársele con los valores críticos de z. La fórmula de conversión, según si ores conocida o no, es

ó



 Ejemplo. En referencia al problema de prueba de hipótesis de los dos ejemplos anteriores, supongamos que la media muestral es 0 = $240.00. Determinamos si la hipótesis nula debe rechazarse convirtiendo esta media a un valor z y comparándolo con los valores críticos de ±1.96, en esta forma:

Este valor de z se halla en la región de rechazo de la cola izquierda del modelo de prueba de hipótesis que aparece en la figura 5. De este modo, la hipótesis nula es rechazada, y la alternativa, de que  $260.00, aceptada. Adviértase que en el ejemplo se habría llegado a la misma conclusión comparando la media muestral 0 = $240.00 con los límites críticos para la media identificados en la figura 4.



Fig g

Una prueba unilateral resulta apropiada cuando nos interesan posibles desviaciones sólo en una dirección respecto del valor hipotético de la media. Podría ocurrir que al auditor del ejemplo no le interesara que el promedio real de la totalidad de las cuentas por cobrar exceda de $260.00, sino sólo que pudiera ser inferior a $260.00. Así, si el auditor le concede el beneficio de la duda al supuesto establecido de que la media real es de al menos $260.00, las hipótesis nula y alternativa son



Nota:   En muchos libros de texto, la hipótesis nula anterior se enunciaría como HO : $260.00. Por nuestra parte, hemos incluido únicamente el signo de igual porque, incluso en una prueba de un extremo, el procedimiento se realiza en relación con este valor en particular. Para decirlo de otra manera, es la hipótesis alternativa la que es unilateral.



 En una prueba unilateral sólo existe una región de rechazo, de modo que la prueba del ejemplo anterior es una prueba de la cola inferior. La región de rechazo de una prueba unilateral se encuentra siempre en la cola que representa el sustento de la hipótesis alternativa. Como en el caso de una prueba bilateral, el valor crítico puede determinarse para la media como tal o en términos de un valor z. Sin embargo, los valores críticos para pruebas unilaterales se diferencian de aquellos para pruebas bilaterales, porque la proporción de área dada se halla en su totalidad en una de las colas de la distribución. En la tabla 11 se presentan los valores de z necesarios para pruebas unilaterales y bilaterales. La fórmula general para establecer el valor crítico de la media muestral para una prueba unilateral, según si a se conoce o no, es

Obsérvese en las fórmulas inmediatamente anteriores, que z puede ser negativa, lo que resulta en una sustracción del segundo término de cada fórmula.



Tabla 11 Valores críticos de Z en pruebas de hipótesis

 


Catálogo: 14%20Educación%20profunda%20y%20experiencias -> 09%20Apoyos%20a%20la%20experimentación -> 01%20Curso%20de%20investigación%20educativa
14%20Educación%20profunda%20y%20experiencias -> Tres lecturas basicas y tres autores firmes para entender lo que son las vivencias
14%20Educación%20profunda%20y%20experiencias -> Educacion vivencial alude a vivencias
14%20Educación%20profunda%20y%20experiencias -> Estilos latinos e italianos
14%20Educación%20profunda%20y%20experiencias -> 1. Lucha contra la depresión y la frustración Tres criterios y consignas La frustración
01%20Curso%20de%20investigación%20educativa -> De Gardner (tomado de Wikipedia)
01%20Curso%20de%20investigación%20educativa -> Las medidas son habituales en psicologia y sociologia
09%20Apoyos%20a%20la%20experimentación -> Leer con los niños
01%20Curso%20de%20investigación%20educativa -> Voluntad la voluntad es la facultad humana por la que realizamos actos de opciones y mantenemos las decisiones de forma adecuada después de hacer elegido


Compartir con tus amigos:
1   ...   11   12   13   14   15   16   17   18   ...   24


La base de datos está protegida por derechos de autor ©psicolog.org 2019
enviar mensaje

enter | registro
    Página principal


subir archivos